You are developing a model to help your company create more targeted online advertising campaigns. You need to create a dataset that you will use to train the model. You want to avoid creating or reinforcing unfair bias in the model. What should you do?
Choose 2 answers
To avoid creating or reinforcing unfair bias in the model, you should collect a representative sample of production traffic to build the training dataset, and conduct fairness tests across sensitive categories and demographics on the trained model. A representative sample is one that reflects the true distribution of the population, and does not over- or under-represent any group. A random sample is a simple way to obtain a representative sample, as it ensures that every data point has an equal chance of being selected. A stratified sample is another way to obtain a representative sample, as it ensures that every subgroup has a proportional representation in the sample. However, a stratified sample requires prior knowledge of the subgroups and their sizes, which may not be available or easy to obtain. Therefore, a random sample is a more feasible option in this case. A fairness test is a way to measure and evaluate the potential bias and discrimination of the model, based on different categories and demographics, such as age, gender, race, etc. A fairness test can help you identify and mitigate any unfair outcomes or impacts of the model, and ensure that the model treats all groups fairly and equitably. A fairness test can be conducted using various methods and tools, such as confusion matrices, ROC curves, fairness indicators, etc.Reference: The answer can be verified from official Google Cloud documentation and resources related to data sampling and fairness testing.
Fairness Indicators | TensorFlow
Lisandra
6 months agoGerman
7 months agoEmiko
7 months agoGerman
7 months agoThersa
8 months agoLettie
8 months agoVallie
8 months agoChristoper
8 months agoFletcher
8 months agoKayleigh
8 months ago