Cyber Monday 2024! Hurry Up, Grab the Special Discount - Save 25% - Ends In 00:00:00 Coupon code: SAVE25
Welcome to Pass4Success

- Free Preparation Discussions

Microsoft Exam DP-100 Topic 8 Question 16 Discussion

Actual exam question for Microsoft's DP-100 exam
Question #: 16
Topic #: 8
[All DP-100 Questions]

A set of CSV files contains sales records. All the CSV files have the same data schema.

Each CSV file contains the sales record for a particular month and has the filename sales.csv. Each file in stored in a folder that indicates the month and year when the data was recorded. The folders are in an Azure blob container for which a datastore has been defined in an Azure Machine Learning workspace. The folders are organized in a parent folder named sales to create the following hierarchical structure:

At the end of each month, a new folder with that month's sales file is added to the sales folder.

You plan to use the sales data to train a machine learning model based on the following requirements:

You must define a dataset that loads all of the sales data to date into a structure that can be easily converted to a dataframe.

You must be able to create experiments that use only data that was created before a specific previous month, ignoring any data that was added after that month.

You must register the minimum number of datasets possible.

You need to register the sales data as a dataset in Azure Machine Learning service workspace.

What should you do?

Show Suggested Answer Hide Answer
Suggested Answer: B

Specify the path.

Example:

The following code gets the workspace existing workspace and the desired datastore by name. And then passes the datastore and file locations to the path parameter to create a new TabularDataset, weather_ds.

from azureml.core import Workspace, Datastore, Dataset

datastore_name = 'your datastore name'

# get existing workspace

workspace = Workspace.from_config()

# retrieve an existing datastore in the workspace by name

datastore = Datastore.get(workspace, datastore_name)

# create a TabularDataset from 3 file paths in datastore

datastore_paths = [(datastore, 'weather/2018/11.csv'),

(datastore, 'weather/2018/12.csv'),

(datastore, 'weather/2019/*.csv')]

weather_ds = Dataset.Tabular.from_delimited_files(path=datastore_paths)


Contribute your Thoughts:

Currently there are no comments in this discussion, be the first to comment!


Save Cancel
az-700  pass4success  az-104  200-301  200-201  cissp  350-401  350-201  350-501  350-601  350-801  350-901  az-720  az-305  pl-300  

Warning: Cannot modify header information - headers already sent by (output started at /pass.php:70) in /pass.php on line 77