Which type of machine learning is used to understand relationships within data and is not focused on making predictions or classifications?
Unsupervised learning is a type of machine learning that is used to understand relationships within data and is not focused on making predictions or classifications. Unsupervised learning algorithms work with unlabeled data, which means the data does not have predefined categories or outcomes. The goal of unsupervised learning is to discover hidden patterns, structures, or features in the data that can provide valuable insights or reduce complexity. Some of the common techniques and applications of unsupervised learning are:
Clustering: Grouping similar data points together based on their attributes or distances. For example, clustering can be used to segment customers based on their preferences, behavior, or demographics.
Dimensionality reduction: Reducing the number of variables or features in a dataset while preserving the essential information. For example, dimensionality reduction can be used to compress images, remove noise, or visualize high-dimensional data in lower dimensions.
Anomaly detection: Identifying outliers or abnormal data points that deviate from the normal distribution or behavior of the data. For example, anomaly detection can be used to detect fraud, network intrusion, or system failure.
Currently there are no comments in this discussion, be the first to comment!