A company has a source system that provides JSON records for various loT operations. The JSON Is loading directly into a persistent table with a variant field. The data Is quickly growing to 100s of millions of records and performance to becoming an issue. There is a generic access pattern that Is used to filter on the create_date key within the variant field.
What can be done to improve performance?
The correct answer is A because it improves the performance of queries by reducing the amount of data scanned and processed. By adding a create_date field with a timestamp data type, Snowflake can automatically cluster the table based on this field and prune the micro-partitions that do not match the filter condition. This avoids the need to parse the JSON data and access the variant field for every record.
Option B is incorrect because it does not improve the performance of queries. By adding a create_date field with a varchar data type, Snowflake cannot automatically cluster the table based on this field and prune the micro-partitions that do not match the filter condition. This still requires parsing the JSON data and accessing the variant field for every record.
Option C is incorrect because it does not address the root cause of the performance issue. By validating the size of the warehouse being used, Snowflake can adjust the compute resources to match the data volume and parallelize the query execution. However, this does not reduce the amount of data scanned and processed, which is the main bottleneck for queries on JSON data.
Option D is incorrect because it adds unnecessary complexity and overhead to the data loading and querying process. By incorporating the use of multiple tables partitioned by date ranges, Snowflake can reduce the amount of data scanned and processed for queries that specify a date range. However, this requires creating and maintaining multiple tables, loading data into the appropriate table based on the date, and joining the tables for queries that span multiple date ranges.Reference:
Rutha
3 days agoIzetta
4 days agoThaddeus
7 days agoJanine
8 days agoAnnabelle
10 days agoTawna
12 days agoDean
14 days agoCarry
4 days agoGlendora
20 days agoCharlette
3 days ago